

Caringbah High School

Year 12 2022 **Mathematics Extension 2** HSC Course Assessment Task 4 – Trial HSC Examination

General Instructions

- Reading time 10 minutes
- Working time -3 hours •
- Write using black or blue pen •
- NESA-approved calculators may be • used
- A reference sheet is provided
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Marks may not be awarded for partial • or incomplete answers

Total marks – 100

10 marks

Attempt Questions 1-10 Mark your answers on the answer sheet provided. You may detach the sheet and write your name on it.

Section II

90 marks Attempt Questions 11-16

Write your answers in the answer booklets provided. Ensure your name or student number is clearly visible.

Name:

Class:

Marker's Use Only								
Section I		Total						
Q 1-10	Q11	Q12	Q13	Q14	Q15	Q16		
/10	/15	/15	/15	/15	/15	/15	/100	

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet (page 13) for Questions 1–10

- 1. Let the point P on an Argand diagram represent the complex number z. After being multiplied by another complex number, ω , P is rotated 90° anti-clockwise and z is enlarged by a factor of 3. Which of the following is the value of ω ?
 - (A) 3*i*
 - (B) −3*i*
 - (C) e^{-3i}
 - (D) $3e^{-\frac{\pi}{2}i}$
- 2. A particle moves in a straight line so that its displacement, x metres, at any time, t seconds, is given by $x = 5 \sin 3t + 12 \cos 3t$. What is the speed of the particle as it passes through the centre of its motion?
 - (A) 12 m/s
 - (B) 13 m/s
 - (C) 39 m/s
 - (D) 117 m/s

3. Which of the following is equivalent to the expression $\frac{12x-3}{(x-2)(x^2-3x+2)}$?

(A)
$$\frac{9}{x-1} + \frac{9}{x-2} - \frac{21}{(x-2)^2}$$

(B) $\frac{9}{x-1} + \frac{18}{x-2} - \frac{21}{(x-2)^2}$
(C) $\frac{9}{x-1} - \frac{9}{x-2} + \frac{21}{(x-2)^2}$

(D)
$$\frac{9}{x-1} - \frac{18}{x-2} + \frac{21}{(x-2)^2}$$

- 3 -

- 4. Which of the following is the vector equation of a line that passes through the
 - point (1,3,-2) and is perpendicular to the line $\begin{pmatrix} 2\\1\\-2 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\1 \end{pmatrix}$?

(A)
$$\begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ -2\\ -2\\ -1 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 2\\ -2\\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix}$$

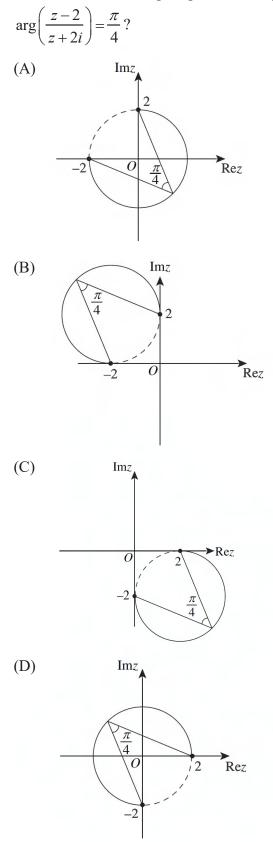
(C)
$$\begin{pmatrix} -1\\ 0\\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 3\\ -4 \end{pmatrix}$$

(D)
$$\begin{pmatrix} -1\\ 0\\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1\\ 1\\ -3 \end{pmatrix}$$

- 5. The acceleration of a particle is given by $a = e^{-3t}$ m/s² where the particle has an initial velocity of 2 m/s. What is the terminal velocity of the particle?
 - (A) 1.3 m/s
 - (B) 1.6 m/s
 - (C) 2.3 m/s
 - (D) 2.6 m/s

Section I continues on page 5

6. Which of the following diagrams best represents the solutions to the equation



7. The points A, B and C are collinear where $\overrightarrow{OA} = \underline{i} - \underline{j}$, $\overrightarrow{OB} = -3\underline{j} - \underline{k}$ and $\overrightarrow{OC} = 2\underline{i} + a\underline{j} + b\underline{k}$ for some constants a and b. What are the values of a and b?

- (A) a = -1 and b = -1
- (B) a = -1 and b = 1
- (C) a = 1 and b = -1
- (D) a = 1 and b = 1

8. Consider the statement: $\exists x \in \mathbb{R}, \text{ ln } x = 1 \text{ and } x > 2$ ' Which of the following is the negation of the statement?

- (A) $\exists x \in \mathbb{R}, \ln x \neq 1 \text{ or } x \leq 2$
- (B) $\exists x \in \mathbb{R}, \ln x \neq 1 \text{ and } x \leq 2$
- (C) $\forall x \in \mathbb{R}, \ln x \neq 1 \text{ or } x \leq 2$
- (D) $\forall x \in \mathbb{R}, \ \ln x \neq 1 \text{ and } x \leq 2$

9. If $\int_{1}^{4} f(x) dx = k$ for some constant k, what is the value of $\int_{1}^{4} f(5-x) dx$? (A) -k(B) 5-k(C) k+5(D) k

10. Which of the following best describes the path of a particle with the following parametric equations?

$$\begin{cases} x = t \sin t \\ y = t \cos t \\ z = t \end{cases}$$

- (A) spiral around the z-axis, traversing in a clockwise direction
- (B) spiral around the z-axis, traversing in an anticlockwise direction
- (C) helix around the z-axis, traversing in a clockwise direction
- (D) helix around the z-axis, traversing in an anticlockwise direction

End of Section I

Section II

60 marks Attempt Questions 11–16 Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a)	Consider the complex numbers $z = 2 + 2\sqrt{3}i$ and $w = 2\sqrt{3} - 2i$.						
	(i)	Find z and w in modulus-argument form.	2				
	(ii)	Find zw and $\frac{z}{w}$ in modulus-argument form.	2				
	(iii)	Describe the relationship between z and w geometrically.	1				

- (b) Consider the equation f(z) = 0 where $f(z) = z^3 11z^2 + 55z 125$.
 - (i) Find the three roots of the equation in the form a+ib, where a and b are 3 real.
 - (ii) Show that the points A, B and C in the Argand diagram representing these 2 roots lie on a circle of the form |z| = k for some constant k, and find the area of $\triangle ABC$.

(c) (i) Find constants A and B such that

$$A(3\sin x + 2\cos x) + B(3\cos x - 2\sin x) = 8\sin x + 14\cos x$$
2

(ii) Hence, find the exact value of
$$\int_{0}^{\frac{\pi}{2}} \frac{8\sin x + 14\cos x}{3\sin x + 2\cos x} dx$$
 3

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) We are given that $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are three consecutive terms in a geometric series, where $a, b, c \in \mathbb{R}$. Show that $a^2 + c^2 \ge ab + bc$.

3

- (b) A body of unit mass falls under gravity through a resisting medium. The body falls from rest from a height above the ground. The resistance to its motion is $\frac{1}{100}v^2$ where v m/s is the speed of the body when it has fallen a distance x m. The acceleration due to gravity is g m/s².
 - (i) Show that the equation of motion of the body is $\ddot{x} = g \frac{1}{100}v^2$ 1
 - (ii) Show that the terminal velocity V m/s of the body is given by $V = 10\sqrt{g}$ 1

(iii) Hence show that
$$v^2 = V^2 \left(1 - e^{-\frac{x}{50}} \right)$$
 3

(iv) Find the distance fallen in metres until the body reaches a velocity equal 2 to half of its terminal velocity.(You may assume this occurs before the body reaches the ground.)

(c) (i) Use the substitution
$$u = \frac{1}{x}$$
 to show that $\int_{\frac{1}{a}}^{a} \frac{\ln x}{1+x^2} dx = 0$ 2

for any constant a > 0.

(ii) Hence, find
$$\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{\tan^{-1} x}{x} dx$$
 in simplest exact form. 3

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the lines L_1 and L_2 , determined by the vector equations

$$L_{1}: \ r_{2} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \text{ and } L_{2}: \ r_{2} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

Show that L_1 and L_2 intersect and are perpendicular, stating the coordinates of the point of intersection.

- (b) A body of mass *m* kg is travelling in a horizontal straight line so that the resultant force on the body is a resistance force of magnitude $\frac{1}{10}m\sqrt{1+v}$ when its speed is *v* m/s. Initially, the speed of the body is 15 m/s.
 - (i) Find the time taken for the body to come to rest. 2
 - (ii) Find the distance travelled by the body in coming to rest. 3

(c) (i) Find the real numbers A and B such that

$$\frac{5}{(x+3)(2x+1)} = \frac{A}{x+3} + \frac{B}{2x+1}$$
2

(ii) Hence, or otherwise, evaluate

$$\int_{0}^{2} \frac{5}{(x+3)(2x+1)} \, dx$$

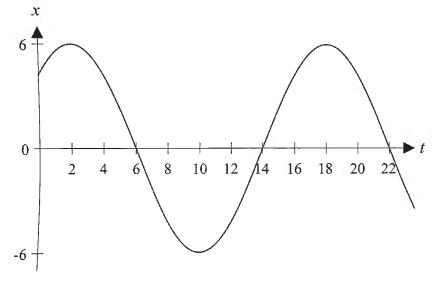
3

(d) Find the points of intersection between the sphere S and the line L, given below. 3

$$S: \quad \begin{vmatrix} r & -\binom{-1}{0} \\ 2 \end{vmatrix} = 3$$
$$L: \quad r = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) The graph below shows the displacement x cm from the centre of motion at time t seconds for a particle performing simple harmonic motion in a straight line.



- (i) Express displacement as a function of time in the form $x = A\sin(nt + \alpha)$ 2
- (ii) Find the distance travelled by the particle in the first 30 seconds of its 2 motion after observation began at time t = 0.

(b) (i) If
$$t = \tan \theta$$
, prove that $\tan 4\theta = \frac{4t(1-t^2)}{1-6t^2+t^4}$ 2

(ii) If
$$\tan \theta \tan 4\theta = 1$$
, deduce that $5t^4 - 10t^2 + 1 = 0$ 2

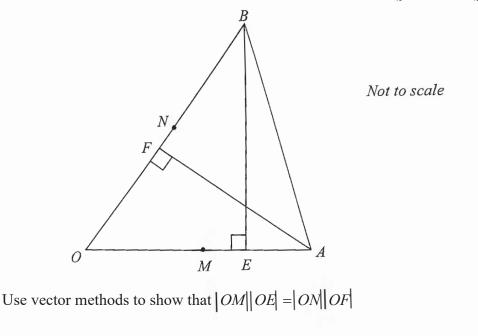
(iii) Given that
$$\theta = \frac{\pi}{10}$$
 and $\theta = \frac{3\pi}{10}$ are roots of the equation $\tan \theta \tan 4\theta = 1$,
find the exact value of $\tan \frac{\pi}{10}$.

(c) (i) Show that for
$$k \ge 2$$
, $\tan^{-1}\left(\frac{1}{k-1}\right) - \tan^{-1}\left(\frac{1}{k+1}\right) = \tan^{-1}\left(\frac{2}{k^2}\right)$ 2

(ii) Hence, show that
$$\lim_{n \to \infty} \left[\sum_{k=1}^{n} \tan^{-1} \left(\frac{2}{k^2} \right) \right] = \frac{3\pi}{4}$$
 3

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) In $\triangle OAB$, *BE* is the altitude from *B* to *OA* and *AF* is the altitude from *A* to *OB*. *M* and *N* are the midpoints of *OA* and *OB* respectively. $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$.



(b) Let
$$I_n = \int_0^1 \frac{x^n}{x^2 + 1} dx$$
 for $n \ge 2$
(i) Show that $I_n + I_{n-2} = \frac{1}{1 - 1}$

n-1

(ii) Hence, or otherwise, show that
$$\int_{0}^{1} \frac{x^{2} (x-1)^{2}}{x^{2}+1} dx = \ln 2 - \frac{2}{3}$$
 3

3

2

(c) Consider the functions
$$f_n(x) = e^x - \left(1 + \sum_{r=1}^n \frac{x^r}{r!}\right)$$
, $n = 1, 2, 3, ...$
(i) Show that $f_n(0) = 0$ and $f_{n+1}'(x) = f_n(x)$ for $n = 1, 2, 3, ...$

(ii) Show that $f_1(x) > 0$ for all x > 0 and hence $1 + x < e^x$ for all x > 0 2

(iii) Use mathematical induction to show that for all positive integers $n \ge 1$, $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} < e^x$ for all x > 03

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Show that
$$(1+i\tan\theta)^n + (1-i\tan\theta)^n = \frac{2\cos n\theta}{\cos^n \theta}$$
, where $\cos\theta \neq 0$, $n \in \mathbb{Z}^+$ 2

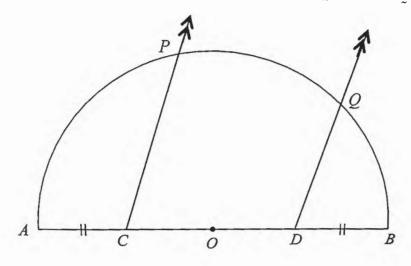
(ii) Hence, show that the roots of $(1+z)^2 + (1-z)^2 = 0$ are $z = \pm i \tan \frac{\pi}{4}$ when z is purely imaginary.

2

3

2

(b) A semi-circle is drawn on diameter AB. O is the midpoint of AB and the points C and D lie on AB such that AC = BD. Parallel lines are drawn through C and D, intersecting the semi-circle at P and Q respectively. $\overrightarrow{OC} = c$ and $\overrightarrow{CP} = p$.



- (i) Explain why $\overrightarrow{DQ} = \lambda p$ for some scalar $\lambda > 0$, then show that $(1-\lambda) p \cdot p + 2 c \cdot p = 0$
- (ii) Hence show that $\angle CPQ = 90^\circ$.

(c) (i) For integer values of
$$n$$
, $I_n = \int_{1}^{e} (1 - \ln x)^n dx$ for $n \ge 0$.
Show that $I_n = -1 + nI_{n-1}$ for $n \ge 1$.

(ii) Use mathematical induction to show that

$$I_n = n!e - 1 - \sum_{r=1}^{n} {}^{n}P_r \text{ for all integers } n \ge 1$$
4

End of Examination

Mathematics Extension 2 - Trial HSC 2022 Solutions
Section 1
1.A 2.C 3.C 4.C 5.C
6.D 7.D 8.C 9.D 10.A
Section 2
Question 11
(A)
$$2 = 2+2\sqrt{3}$$
 W= $2\sqrt{3}-2$ i
(i) $|2|=\sqrt{2^2+(2\sqrt{3})^2} = 4$
 $arg(2) = 4an^{-1}(\frac{2\sqrt{3}}{2}) = \frac{\pi}{3}$ $\therefore 2 = 4ais\frac{\pi}{3}\sqrt{3}$
 $|w| = \int (2\sqrt{3})^2 + (-2\sqrt{4})^2 = 4$
 $arg(-2) = 4an^{-1}(\frac{2\sqrt{3}}{2}) = \frac{\pi}{3}$ $\therefore w = 4ais(-\frac{\pi}{3})\sqrt{3}$
 $|w| = \int (2\sqrt{3})^2 + (-2\sqrt{4})^2 = 4$
 $arg(-2) = 4an^{-1}(\frac{2\sqrt{3}}{2}) = -\frac{\pi}{3}$ $\therefore w = 4ais(-\frac{\pi}{3})\sqrt{3}$
(ii) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{2}$ $\sqrt{3}$
(iii) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3} \times 4ais(-\frac{\pi}{3})$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
(iv) $2w = 4ais\frac{\pi}{3}$ $\sqrt{3}$
 $= 1bcis\frac{\pi}{3}$ $\sqrt{3}$
 $= 1b$

(i)
$$f(4) = 4_3^{-1} + 16_3 = 16_3^{-1} + 16_3^{-1} = 2$$

(i) $f(4) = 4_3^{-1} + 16_3^{-1} + 22_3^{-1} = 2$
(ii) $f(4) = 4_3^{-1} + 16_3^{-1} + 22_3^{-1} = 2$
(ji) $f(4) = 4_3^{-1} + 16_3^{-1} + 22_3^{-1} = 2$
(ji) $f(4) = 4_3^{-1} + 16_3^{-1} + 22_3^{-1} = 2$
(ji) $f(4) = 4_3^{-1} + 16_3^{-1} + 22_3^{-1} = 2$
(ji) $f(5) = 2$
(ji) $f(5)$

Ext 2 Trial 2022 Solutions Page 2

(c) (i) A(3 cmx+2 cosx) + §(3 cosx - 2 sinx) = 8 sinx + 14 cosx
3 A sunx + 2 Acos x + 3 & cosx - 28 sinx + 8 cosx
(3A - 28) sonx + (2A + 38) cosx = 8 sinx + 14 cosx
(3A - 28) sonx + (2A + 38) cosx = 8 sinx + 14 cosx
Equating coefficients,
3A - 28 = 8 - 1
2A + 38 = 14 - 2
(b)
$$\sqrt{2}$$
: (A - 48 = 16 - 3)
(c) $\sqrt{2}$: (A + 48 = 42 - 4)
(c) $\sqrt{2}$: (A + 48 = 42 - 4)
(c) $\sqrt{2}$: (a + 48 = 42 - 4)
(c) $\sqrt{2}$: (c) $\sqrt{2}$

Question 12 (a) (i): 1/2 1/2 a, b, c e R Common ratio $r = \frac{1}{\sqrt{4}} = \frac{\frac{1}{2}}{\frac{1}{4}}$ 9/1 = 1/c ∴ac=1³ -0 ✓ Now, consider $(a-b)^2 = a^2 - 2ab + b^2 > 0$ a²+b² ≥ 2ab -2 Similarly, $b^{\perp} + c^2 \ge 2bc - 3$ Q² + 1³ ≥ 2ac - 3 (2+3+(+): $2(a^2+b^2+c^2) \ge 2(ab+bc+ac)$ a'+ 🔍 + (' > ab+bc+ac for 🛈 / : a2+c2 ≥ ab+ bc, as required (1)(i) F=ma $g = \frac{1}{100}v^2 = 1xx$ J Jg Ttoov2 $\therefore \ddot{x} = g - \frac{1}{100} v^2$ 1 Show When x=0, v=V>0 (ii) $0 = q - \frac{1}{100}V^2$ 100 V2 5 $V^2 = 1009$ V Show : . V = 10 .G

(iii)
$$\ddot{x} = v \frac{dv}{dx} = g - \frac{1}{100} v^{2}$$

 $\frac{dv}{dx} = \frac{100v}{100g - v^{2}} dv$
 $x = \int \frac{100g}{100g - v^{2}} dv$
 $x = \int \frac{100g}{100g - v^{2}} dv$
 $\frac{x}{50} = \ln \left(\frac{100g}{100g - v^{2}}\right)$
 $e^{\frac{2}{50}} = \frac{100g}{100g - v^{2}}$
 $(00g - v^{2} = 100g e^{-x/x_{0}} v^{2} = 100g e^{-x/x_{0}} v^{2} = 100g (1 - e^{-x/x_{0}}) \sqrt{Show}$
(v) Sub $v = \frac{1}{2}$
 $\frac{\sqrt{x}}{4} = \frac{\sqrt{x}}{1 - e^{-x/x_{0}}} \sqrt{Show}$
(v) Sub $v = \frac{\sqrt{2}}{4}$

(c)
$$\int_{a}^{a} \frac{\ln x}{(+\pi)^{2}} dx$$

$$= \int_{a}^{b} \frac{\ln (bx)}{(+\pi)^{2}} - \frac{1}{h^{2}} du$$

$$= \int_{a}^{b} \frac{\ln (bx)}{(+(bx))^{2}} - \frac{1}{h^{2}} du$$

$$= \int_{a}^{a} \frac{-\ln u}{(+u)^{2}} du$$

$$= \int_{a}^{a} \frac{-\ln u}{(+u)^{2}} du$$

$$= \int_{a}^{a} \frac{-\ln u}{(+u)^{2}} du$$

$$= \int_{a}^{b} \frac{-\ln x}{(+\pi)^{2}} dx$$

$$= \int_{a}^{b} \frac{-\ln x}{(+\pi)^{2}} dx$$

$$= \int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx = 0$$
(a)
$$\int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx = 0$$
(b)
$$\int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx = 0$$
(c)
$$\int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx = 0$$

$$= \ln x \cdot \tan^{-1} x \int_{a}^{b} - \int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx$$

$$= \ln x \cdot \tan^{-1} x \int_{a}^{b} - \int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx$$

$$= \ln x \cdot \tan^{-1} x \int_{a}^{b} - \int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx$$

$$= \ln x \cdot \tan^{-1} x \int_{a}^{b} - \int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx$$

$$= \ln x \cdot \tan^{-1} x \int_{a}^{b} - \int_{a}^{b} \frac{\ln x}{(+\pi)^{2}} dx$$

$$= \frac{\pi \ln \sqrt{3}}{2}$$

$$= \pi \ln \sqrt{3}$$

Question 13
(A) L_1:
$$f_{\pm} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$
 (A) $L_2: f_{\pm} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $\begin{pmatrix} 3 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} = 2\lambda + -ixi + ix - i - D$
 $\therefore L_1 \perp L_2$
Then, FOI when $\begin{pmatrix} 3 \\ 2 \end{pmatrix} : \begin{pmatrix} 3 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $3+2\lambda = -1 + \mu = -3$
 $2-\lambda = i + \mu = -3$
 $2-\lambda = i + \mu = -3$
 $-1+\lambda = -\mu = -3$
(D) $-3 : 1+3\lambda = -2$
 $\lambda = -1 - -3$
Sub (B) in (B): $2--1 = i + \mu$
 $\mu = 2$
Text $\lambda = -i - \mu = 3$
 $2 + 2 + i - \mu = 2$
 $\mu = 2$
Text $\lambda = -i - \frac{1}{2}$
 $2 + 2 + i - \frac{1}{2} = -\frac{1}{2}$
 $2 + 2 + i - \frac{1}{2} = -\frac{1}{2}$
 $2 + 2 + i - \frac{1}{2} = -\frac{1}{2}$
 $2 + 2 + i - \frac{1}{2} = -\frac{1}{2}$

(b)(i)
$$F = ma$$

$$\frac{1}{10} \sqrt{1} Frv = \sqrt{12} \frac{1}{10} \sqrt{1} Frv$$

$$\frac{1}{4v} = \frac{-10}{\sqrt{16v}} \sqrt{1} \frac{1}{4v}$$

$$\int_{v}^{T} \frac{1}{4v} = \int_{v}^{-10} (v_{v})^{V_{2}} dv$$

$$\int_{v}^{T} \frac{1}{4v} = \int_{v}^{-10} (v_{v})^{V_{2}} \frac{1}{9} \frac{1}$$

$$\begin{aligned} &(c)(i) \quad \frac{S}{(x+3)(2x+1)} = \frac{A}{x+3} + \frac{B}{2x+1} \\ &S = A(2x+1) + B(x+3) \\ Sub x = \frac{-1}{2} \\ &S = A(0) + B(S/2) \\ &B = 2 \\ Sub x = -3 \\ &S = A(-S) + B(D) \\ &A = -1 \\ &\vdots, A = -1, B = 2 \end{aligned}$$

$$\begin{aligned} &(i) \quad \int_{0}^{2} \frac{S}{(x+3)(2x+1)} dx = \int_{0}^{2} \frac{-1}{2x+2} + \frac{2}{2x+1} dx \\ &= \left[-\ln |x+3| + \ln |2x+1|\right]_{0}^{2} \\ &= \left[\ln \left|\frac{2x+1}{x+5}\right|\right]_{0}^{2} \end{aligned}$$

$$\begin{aligned} &= \left[\ln \left|\frac{2x+1}{x+5}\right|\right]_{0}^{2} \\ &= \ln |(\frac{1}{3}) \\ &= -\ln (\frac{1}{3}) \\ &= -\ln (\frac{1}{3}) \end{aligned}$$

$$\begin{pmatrix} di & S: \left| \frac{v}{v} - \begin{pmatrix} \frac{1}{0} \\ \frac{1}{2} \end{pmatrix} \right|_{x=3}^{2} & \text{and} \quad L: \quad \frac{v}{v} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$
FOT where
$$\left| \begin{pmatrix} 0 \\ 1 \\ \frac{1}{2} \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} - \begin{pmatrix} -\frac{1}{0} \\ \frac{1}{2} \end{pmatrix} \right|_{x=3}^{2} = 3$$

$$\left| \begin{pmatrix} 1+\lambda \\ \frac{1+\lambda}{1+\lambda 2} \end{pmatrix} + \begin{pmatrix} \frac{1+\lambda}{1+\lambda 2} \end{pmatrix} \right|_{x=3}^{2} = 9$$

$$\begin{pmatrix} 1+\lambda \\ \frac{1+\lambda 2}{1+\lambda 2} \end{pmatrix} + \begin{pmatrix} \frac{1+\lambda}{1+\lambda 2} \end{pmatrix} = 9$$

$$(1+\lambda)^{2} + (1+\lambda)^{2} + (1+2\lambda)^{2} = 9$$

$$(1+\lambda)^{2} + (1+\lambda)^{2} + (1+2\lambda)^{2} = 9$$

$$(1+\lambda)^{2} + (1+2\lambda)^{2} + (1+2\lambda)^{2} = 9$$

$$(1+\lambda)^{2} + (1+\lambda)^{2} + (1+2\lambda)^{2} + 1 - 4\lambda + t+\lambda^{2} = 9$$

$$\delta \lambda^{2} = 6$$

$$\lambda^{2} = 1$$

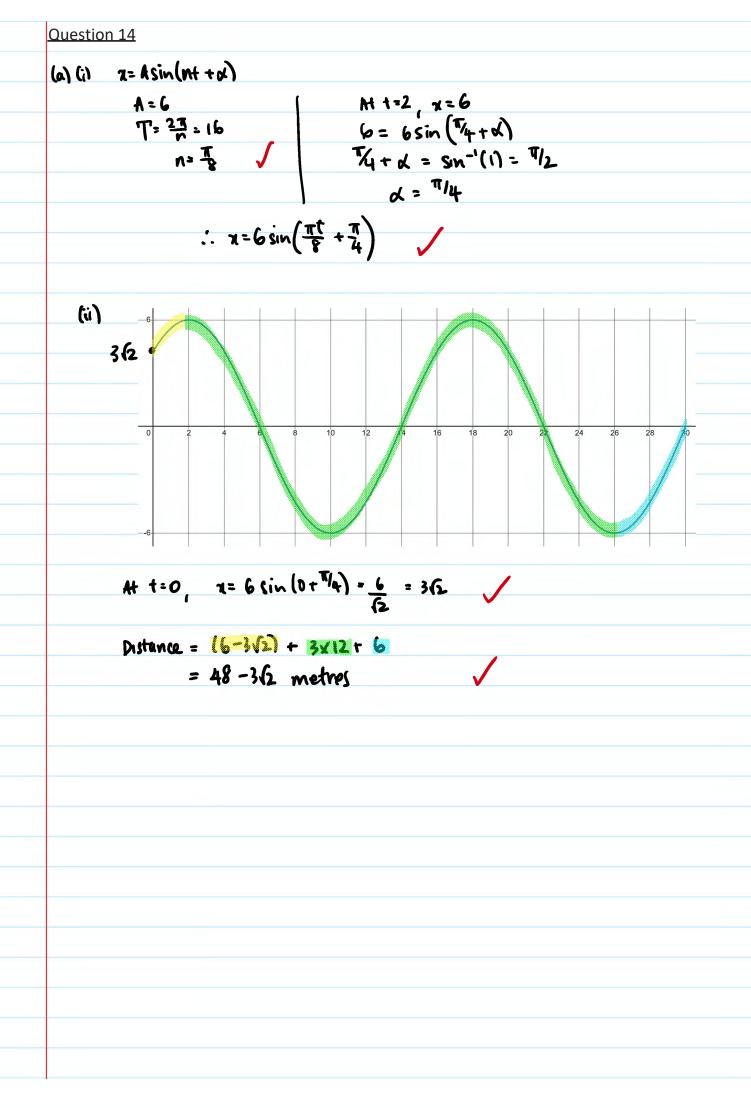
$$Sub \lambda^{n} = 1 \text{ in } L^{2} \quad \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \end{pmatrix}$$

$$Sub \lambda^{n-1} \text{ in } L^{2} \quad \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$

$$both Pails$$



(b) (i)
$$RP: -4m +9 = \frac{44(1-4^{2})}{1-64^{2}+4^{2}}$$

Lxt:= tan +40
= tan (2x20)
= $\frac{2 \tan 20}{(-\tan^{2}20^{2})}$ Sub t= tan 9
= $\frac{2(2\tan 0/(-\tan^{2}0)^{2})}{(-(2\tan 0/(-\tan^{2}0))^{2}}$ Sub t= tan 9
= $\frac{44}{(-4^{2})^{2}}$
= $\frac{1}{(-4^{2}+4^{2})^{2}}$
= $\frac{44}{(-4^{2})^{2}}$
= $\frac{1}{(-4^{2}+4^{2})^{2}}$
= $\frac{1}{(-4^{2}$

Cuestion 15
(a)
$$\overrightarrow{oli} : \frac{1}{2} \overrightarrow{oli} : \frac{1}{2} \underbrace{a}_{2}$$

 $\overrightarrow{oli} : \frac{1}{2} \overrightarrow{oli} : \frac{1}{2} \underbrace{b}_{2}$
 $\overrightarrow{oli} : \frac{1}{2} \overrightarrow{oli} : \frac{1}{2} \underbrace{b}_{2}$
(will $|or| : \frac{1}{2} |b|^{2}$
(will $|or| : \frac{1}{2} |b|^{2}$
Also, AFLOB, so $\overrightarrow{A} : \overrightarrow{a} = 0$
 $(\mu \ge 1) : \ge 0$
 $\mu \ge 2 - \mu \ge 2$
 $\mu \ge 2 - \mu \ge 2$
 $\mu \ge 2 - \mu \ge 2$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$
 $\mu \ge 2 - \lambda \ge 2 = 0$

$$\begin{cases} b) & J_{n} : \int_{0}^{1} \frac{x^{n}}{x^{2}+1} dx \\ (i) \quad LH \subseteq J_{n} + J_{n-2} \\ & = \int_{0}^{1} \frac{x^{n}}{x^{2}+1} dx + \int_{0}^{1} \frac{x^{n-2}}{x^{2}+1} dx \\ & = \int_{0}^{1} \frac{x^{n} (x^{2}+1)}{x^{2}+1} dx \\ & = \left[\frac{x^{n-1}}{n-1} \right]_{0}^{1} \\ & = \frac{1}{n-1} = 0 \\ & = \frac{1}{n-1} = 0 \\ & = \frac{1}{n-1} \\ & : PH (C \\ (i) \quad \int_{0}^{1} \frac{x^{2}(x-1)^{2}}{x^{2}+1} dx = \int_{0}^{1} \frac{x^{2}(x^{2}-2x+1)}{x^{2}+1} dx \\ & = \int_{0}^{1} \frac{x^{n}}{x^{2}+1} - 2\frac{x^{2}}{x^{2}+1} + \frac{x^{2}}{x^{2}+1} dx \\ & = \frac{1}{3} - 2\left(\frac{1}{2}-T_{1}\right) \qquad \text{from (i)} \\ & = \frac{1}{3} - 1 + \int_{0}^{1} \frac{2x}{x^{2}+1} dx \\ & = \frac{-2}{3} + \left[bn(x^{2}+1) \right]_{0}^{1} \\ & = \frac{-2}{3} \\ & = bn(2 - \frac{2}{3} \end{bmatrix}$$

$$\begin{aligned} t_{0} \quad t_{n}(x) \in e^{x} - \left(1 + \sum_{r=1}^{n} \frac{x^{r}}{r^{r}}\right) & n = 1/2/3, \dots \\ t_{1} \quad t_{n}(b) \in e^{0} - \left(1 + \sum_{r=1}^{n} \frac{x^{r}}{r^{r}}\right) \\ & = 1 - 1 - 0 \\ & = 0 \\ \\ t_{nr_{1}}(x) \in e^{x} - \left(1 + \sum_{r=1}^{n} \frac{x^{r}}{r^{r}}\right) \\ & = e^{x} - \left(1 - \left(\frac{x}{1} + \frac{x^{r}}{2} + \frac{x^{r}}{2}\right) + \frac{x^{r}}{n!} + \dots + \frac{x^{n}}{n!} + \frac{x^{n+1}}{n!}\right) \\ t_{nr_{1}}(x) = e^{x} - 0 - \left(\frac{t}{1!} + \frac{x^{r}}{2!} + \frac{x^{r}}{3!} + \frac{x^{r}}{4!} + \dots + \frac{x^{n+1}}{n!} + \frac{x^{n}}{n!}\right) \\ & = e^{x} - \left(1 + \frac{x}{1!} + \frac{x^{r}}{2!} + \frac{x^{r}}{3!} + \dots + \frac{x^{n+1}}{n!} + \frac{x^{n}}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{1!} + \frac{x^{r}}{2!} + \frac{x^{r}}{3!} + \dots + \frac{x^{n+1}}{n!} + \frac{x^{n}}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{1!} + \frac{x^{r}}{2!} + \frac{x^{r}}{3!} + \dots + \frac{x^{n+1}}{n!} + \frac{x^{n}}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x^{r}}{2!} + \frac{x^{r}}{3!} + \dots + \frac{x^{n+1}}{n!} + \frac{x^{n}}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x^{r}}{2!} + \frac{x^{r}}{3!} + \dots + \frac{x^{n+1}}{n!} + \frac{x^{n}}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x^{r}}{2!} + \frac{x^{r}}{3!} + \dots + \frac{x^{n+1}}{n!} + \frac{x^{n}}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{2!} + \frac{x^{r}}{3!} + \dots + \frac{x^{n+1}}{n!} + \frac{x^{n}}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{2!} + \frac{x^{r}}{3!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{2!} + \frac{x^{r}}{3!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{2!} + \frac{x^{r}}{3!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{2!} + \frac{x^{r}}{3!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{2!} + \frac{x}{3!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{2!} + \frac{x}{3!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{2!} + \frac{x}{3!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!} + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 + \frac{x}{n!}\right) \\ & - e^{x} - \left(1 +$$

(iii) RTP:
$$\left(+\frac{\pi}{1!}+\frac{\pi^{2}}{2!}+\frac{\pi^{3}}{3!}+...+\frac{\pi^{n}}{n!}< e^{\pi} \quad 4r \quad \pi>0.$$

Siep 1 for n=1
LHS = 1+x. [Inx < e^{\pi} from (ii)]
PHS = e
LHS < RHS, statement is time for n=1
Siep 2 Assume statement is time for n=k
i.e. $\left(+\frac{\pi}{2!}+\frac{\pi^{2}}{2!}+\frac{\pi^{3}}{3!}+...+\frac{\pi^{k}}{k!}< e^{\pi} \\ \Rightarrow e^{\pi}-\left((+\frac{\pi}{1!}+\frac{\pi^{k}}{2!}+\frac{\pi^{k}}{3!}+...+\frac{\pi^{k}}{k!}\right) = f_{k}(\pi) > 0$

Siep 3 Atompt to prove statement is time for n=k+1)
i.e. $\left[+\frac{\pi}{2!}+\frac{\pi^{k}}{2!}+\frac{\pi^{3}}{3!}+...+\frac{\pi^{k+1}}{2!}\right] < e^{\pi}$
RHS-LHS = $e^{\pi}-\left((+\frac{\pi}{1!}+\frac{\pi^{k}}{2!}+\frac{\pi^{3}}{3!}+...+\frac{\pi^{k+1}}{2!}\right)$
 $= f_{km}(\pi)$
 > 0 , since $f_{km}(0) = 0$ (i) and
 $and f_{km}(h) = f_{k}(h) > 0$ from assumption
 \therefore RHS > LHS
 \therefore Statement is time for n=k+1 if it is true for n=k
 $\frac{4\pi e}{2}$ for intight of mathemetical induction, the statement
is time for integers n>1.

Question 16

(a) (i)
$$[2]P$$
: $(1+itan P)^n + (1-itan P)^n = \frac{2 \cos n P}{\cos^n P}$
 $[LMS^{-1} (1+itan P)^n + (1-itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+itan P)^n + (1+itan P)^n + (1+itan P)^n$
 $: (1+it$

(i)
(i)
(i)

$$\frac{1}{2} \int_{0}^{1} \int$$

$$= -i + (k + 1)! e - (k + 1) - (k + 1) \left[\frac{k!}{(k-1)!} + \frac{k!}{(k-2)!} + \frac{k!}{(k-2)!} + \dots + \frac{k!}{(k-2)!} \right]$$

$$= -i + (k + 1)! e - (k + 1) - \sum_{\substack{k=1 \\ r = 2}}^{k+1} k + \frac{k!}{(k-1-3)!} + \frac{(k+1)!}{(k-1-3)!} + \dots + \frac{(k+1)!}{(k-1-(k+1))!} \right]$$

$$= -i + (k + 1)! e - (k + 1) - \sum_{\substack{r = 1 \\ r = 2}}^{k+1} k + \frac{k}{r} - \frac{k + 1}{r} \frac{k!}{r}$$

$$= -i + (k + 1)! e - (k + 1) - \sum_{\substack{r = 1 \\ r = 1}}^{k+1} k + \frac{k}{r} - \frac{k + 1}{r} \frac{k!}{r}$$

$$= (k + 1)! e - (k + 1) - \sum_{\substack{r = 1 \\ r = 1}}^{k+1} k + \frac{k}{r} - \frac{k + 1}{r} \frac{k!}{r}$$

$$= (k + 1)! e - (k + 1) - \sum_{\substack{r = 1 \\ r = 1}}^{k+1} k + \frac{k}{r} - \frac{k + 1}{r} \frac{k!}{r}$$

$$= 2k + 5$$

$$\therefore Statement 11 true for n=k+1 if t is true for n=k$$

$$\frac{5k + 4}{r} = k + k \text{ principle of mathematical induction, statement is true for m = 1.$$